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The stability of motion of a system described by Volterra integrodifferential equations is investigated in the critical case 
when the characteristic equation has a pair of pure imaginary roots. Conditions for instability, analogous to the well-known 
conditions from the theory of differential equations [1], are derived. (A similar result was established previously in [2] for integro- 
differential equations of simpler structure with integral kernels of exponential-polynomial type.) For the proof, several 
manipulations are used to sJimplify the o. riginal equation and, in particular, to reduce the linearized equation to the form of a 
differential equation with constant diagonal matrix. (An analogous approach was used to analyse instability for Voiterra 
integrodifferential equation:; in the critical case of one zero root in [3, 4].) As an example, the sign of the Lyapunov constant in 
the problem of the rotational motion of a rigid body with viscoelastic supports is calculated. © 1998 Elsevier Science Ltd. 
All rights reserved. 

1. We will consider a system with aftereffect,  whose per turbed mot ion in the ne ighbourhood of  the mot ion  
being invest igated is descr ibed by the equa t ion  

d x  t 
d---~-=Ax+~ K ( t - s ) x ( s ) d s + F ( x , ~ , t ) ,  x ~ R " ,  ~ e R  m (1.1) 

0 

w h e r e A  is a constant  n x n matrix, and the n x n matrix K(t) ~ C is defined on the set I = {t e R: t >I 0} 
and satisfies the inequali ty 

IlK(011 ~< C exp(-I~t), C, 13 = const > 0 (1.2) 

The  vec tor -va lued  funct ion F(x, y,  t): Bz(x, y )  x I ---> R n in (1.1), where  B2(x, y )  = {x ~ R n, y ~ Rm: 
IIx II < Rt ,  IlY II < Re} for given Ri > 0 (i = 1, 2), is assumed to be  ho lomorph ic  i n x  a n d y ;  moreove r ,  
it is assumed that  the coefficients of  its power  series expansion are e i ther  cont inuous  and  tend  
exponent ia l ly  to const~tnts as t ---> +oo, or  are  constants.  The  func t iona ly  has the fo rm 

t 

= ~ Bf(t - s)¢(x(s) ,  s)ds (1.3) 
0 

~(x, t ) :Bl(x)xl---> R k, B l ( x ) = { x ~ R n :  Ilxll<R l } 

where  #(x, t) is a vec tor -va lued  function,  ho lomorph ic  in x, with expansion coefficients o f  the  s ame  type 
as F(x, y ,  t), and K(t)  ~ C is an m x k matr ix  given for  t ~ I such that  

II/((t)ll<~ C e x p ( - x t ) ,  C, × = e o n s t  > 0 (1.4) 

We will a ssume tha t  the funct ions F and ~ are such that,  a f t e rx  has been  rep laced  by ex (e = const) ,  
this subst i tut ion also including Eq.  (1.3), the expansion o f f  in a series of  powers  of  E begins with t e rms  
of  not  less than  the second order .  

T h e  Cauchy p r o b l e m  can be cons idered  for  Eq. (1.1)-(1.4)  and the Lyapunov  stability of  the trivial 
solution can be invest igated with respect  to dis turbance of  the initial condi t ions x(0). 

In what  follows we sMll  use the following notat ion.  
I f  a funct ion ~/(t) satisfies an inequali ty o f  the following type for  t e I 
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IIv(t)ll~ < cexp(yt), c = const > 0 

then we write ~(t) e el(T), that is, ¥(t) belongs to the class el(~/). R2: 
Similarly, f f V l ( t , s ) i s a f u n c t i o n d e f i n e d o n t h e s e t J =  {(t,s) e O ~ s < ~ t <  +**}, satisfying the 

inequality 

IIw1 (t, s)ll~ < C exp[T(t - s)] 

then we write II/1(/', $) e e2(T). 
Let K*(X) be the Laplace transform of the matrix K(t). By (1.2), the characteristic equation for (1.1) 

det(~E, - A - K*(X)) = 0 (1.5) 

exists for Re X ~ -13 and the determinant in (1.5) is analytic for Re X > -13. We shall assume that Eq. 
(1.5) has a finite number of roots in the half-plane Re Z > -13, say X~ (j = 1 . . . . .  N), numbered in order 

• • • • • 

of increasing real parts, with Re ~. < 0 (j = 1 . . . . .  N - 2) and Z~¢-1 = ~co, X~v = ~co, co 0. Suppose 
that Zt (1 = 1 . . . . .  n) are the characteristic exponents of the solutions of the linearized equation (1.1) 
such that 

- -~ < ~ l  ~ ~'2 ~ "'" ~ ~'n-2 < ~ 'a-I  ---- ~*n = 0 (1.6) 

and that all the roots of the characteristic equation corresponding to Zl (l = 1 . . . . .  n) are simple and 
Re ~.; < 7q (s = 1 . . . . .  N - n); some of them may be complex conjugates: ~ = gs + Ros, Ls+l = I~ - 
ions (s = 1 . . . . .  p) .  Then the resolvent of the linearized equation (1.1) may be expressed as [5] 

N 
R( t )=  ~ p texp(Z~t )+R I(t), t ~  1, Pt =const (1.7) 

I=N-n+!  

where the n x n matrixRl(t) e C 1 is such that Rl(t ) ~ e1(-131), where 131 > 0 is a constant satisfying the 
inequality -[3 < -131 < ~,1. We shall assume that for some 13' t> 131 

dRl(t)ldt e e1(-13" ) (1.8) 

2. We will now perform a series of transformations that will enable us to single out critical variables. 
We introduce a fundamental solution matrixX'(t) of the linearized equation (1.1) and suppose it to be 
normal in the Lyapunov's sense [1]. Ifx~(t) (l = 1 . . . . .  n) are fundamental solutions (columns of X'(t)), 
then the characteristic exponents satisfy the equalities Z(x~(t)) = ~. (] = 1 . . . . .  n - 2) and 

x~_ i (t) = 2(a cos cot - b sin cot) + x~'.q (t) 

x~, (t) = 2(b cos cot + a sin cot) + x'n'(t ) (2.1) 

where a and b are constant vectors and X(x'j(t)) <~ ~-2, k = n - 1, n. Define a function 

d(t)  = exp - j t  det X'( t )  (2.2) 

which, as follows from the structure of the fundamental solutions, may be expressed as d(t)  = d o + 
dl(t), where do = const and dl(t) e e1(~-2). Let us assume that for t e I this function satisfies the condition 

Id(t)l~ d '  > 0, d" = const (2.3) 

Let us consider the basis conjugate to x~(t), sayy~(t), whose vectors are the rows of a matrix Y'( t )  = 
(y~(t)) such that Y ' ( t )X ' ( t )  = En. Define a fundamental solution matrix X ( t  - s)  (X(0) ffi En) of the 
linearized equation (1.1) with lower limit of integration s, with whose help the general solution of Eq. 
(1.1) may be expressed in terms of the Cauchy integral formula [6]. 

It follows from the structure of the general solution (1.7) and from (2.3) that the linearized equation 
(1.1) is regular in Lyapunov's sense. Consequently, we have the equalities Z(y'j(t)) ffi - ~  (l ffi 1 . . . . .  n) and 
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y~ (t) = exp(-~,~t)(ctj + y~'(t)) 

Y'-Ij (t) = 5j (b) cos tot + 5j (a) sin cot + y~'_ lj  (t) 

y,~: (t) = -S j  (a) cos cot + 5j (b) sin cot + y~ (t) 

(2.4) 

where c# are (real or complex) constants, 8j(a), 5j(b) are real constants and y~j(t) ¢ el(tz), a < 0 
( k , j  = 1 . . . .  , n; 1 = 1 . . . . .  n - 2). We make the change of variables 

/1 

Yl =xt ,  Yk = ~, y'kj(t)xj, l = l  ..... n - 2 ,  k = n - l , n  (2.5) 
j=l 

where the coefficients are continuous and bounded for t E I; provided that 

~i,t I ' ' ' ' ( ) = Yn-ln-t (t)Ynn ( t ) -  Yn-ln (t)Ynn-I (t)l= 

=180+81(t)1~>8~>0, 80,8~=const, 81(t)¢el(Ct) (tx<O) (2.6) 

this transformation is of the Lyapunov type. Changing to complex-conjugate variables 

Wn-I = Yn-I + iYn, wn = Yn-! - iYn 

and using (2.6), we deduce the following formulae for the transformation inverse to (2.5) 

(2.7) 

n - 2  

x~ = )". W~(t)exp(:t/t0t)wk+ Y. Ysj(t)yj, s = n - l , n  
k~n-l.n j=! 

Wsk(,:) = ws(O, + Ws(1)(t), ysj(,) = y~O) + ~l)(t); ws(O), y,o) sj = const 

W(~(t), Y~)( t )  E e1(--7) for some y > 0. 
The plus sign is taken for k = n and the minus for k = n - 1. 

3. We now transform the subsystem for the non-critical variable y = col(y1 . . . . .  Yn-2). To that end 
we introduce a Lyapunov-normal fundamental solution matrix X~(t) by deleting the (n - 1)th and nth 
rows and columns. In the same way, we derive from the matrixX(t - s )  a fundamental matrixX2(t - s )  
(X2(0) = En-2) for this subsystem. 

Let A[ = diag(~,~-n+l . . . . .  L~v-2), where Re k~-n+t = ~t (1 = 1 . . . . .  n - 2). Let us assume that for t  E I 

Idet(X~t)exp(-Ait))l>~ 81 >0, 81 =const 

Note that the determinant in this inequality tends exponentially to a constant as t ---> +-0. 
We introduce a matrix Y~(t) such that Y~(t)X~(t) = En-2 and make the substitution 

(3.1) 

z = exp(Ai t )Y~(t)y  (3.2) 

with coefficients that ate bounded and continuous for t E I and tend to constants as t ~ +-0. After the 
transformations (2.5), t12.7) and (3.2) have been applied we obtain, using Lemma 1 of [3], equations 
analogous to (2.2) and (3.4) of [2]; of these equations, we will write here only those for the critical 
variables 

l 
i 

dt o j=l 
(tpn_ U (t, S) + itpn j (t, s))Fj'(Z(S), w(s), ~(S), s)ds + 

n 

+ ~ ' .  ' t - k ' '  ' w ^ (Yn-lj( ) IYnj(t))Fj(z, ,y , t) ,  k = n - l , n ;  w=col(wn_l ,Wn) (3.3) 
j=l 

where~ (t) is the integral (1.3) transformed to the variables z, w and the functions ~ a r e  the components 
of the vector F in (1.1), transformed to the variables z, w. The upper sign in (3.3) corresponds to 
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k = n - 1. In Eqs (3.3) 

= - -  Z Y ~ ( t ) x u ( t - s )  , ~pq(t,s) 3t t=l k = n - 1, n (3.4) 

Equations (3.3), as well as the equations for the non-critical variables, corresponding to the complex- 
conjugate elements of the matrix A~, are complex conjugate. By (2.4), we have 

Y'n-U (t)=l: iY'ni (t) = c~ exp(:l:io}t)+ :~ (t), c~ = const, :~ (t) e e I ( -y) ,  T > 0 

It can also be shown, using (3.4) and the relationship between y'~.(t) and xij(t) and performing the 
necessary calculations, that 

q~, -u( t , s )+i tpn j ( t , s )=exp( i to t )dP)( t - s )+~j ( t , s ) ,  O j ( t ) e e l ( - y )  (3.5) 

where ~j(t, s) is the sum of terms of the form ~01(t)q~2(t, s), with q~l(t) e el(-yx ), (P2(t, s) e e2(-~/2) for 
"~X > 0 , ' ~ 2 > 0 .  

All the coefficients ~(t) of terms in (3.3) and in the subsystem for the non-critical variables that 
depend only on zt (l = 1 . . . . .  n - 2) and are outside the integral sign have the structure ~(t) = 
~0 + ~l(t), where 90 - const, ~1 e el(-Y) for some y > 0, and all the integral kernels belong to the class 
e2(-'Y). 

The scheme of the subsequent discussion is more or less a repetition of the proof presented in [2]. 
In particular, integration by parts and a substitution of the type 

U = Z+ U4m(W,t )+ 
! 

w ~ w I tmm(0.1)to o,, kl (s)wlnl(s)u(s)ds+ , (w, t)  n-I n J ' "  t,', °/Wn-I U2m+l 
sm(O,l)=l 0 

where k, l, k /and ll  are non-negative integers, m(0, 1) is the set of these numbers, sin(0, 1) is their sum, 
U4s(w, s) is a polynomial in w, of degree 4m, with continuous bounded coefficients, and U~+x (w, t) 
is a finite sum of integral terms (of the indicated type) of degree greater than two, linear in u, containing 
multiple integrals with continuous kernels of the class e2(-]t ) for y > 0; all terms depending only on the 
variables Wn-1 and w,  up to some order 4m inclusive may be successively excluded from the equation 
for the non-critical variables, as can integral terms that are linear in a non-critical variable of order up 
to and including 2m + 1. We write the equation, thus transformed, as 

du I dt = A'2u + U(u, w, t)  

where the integral operator U has the properties described above. 
After a series of simplifying transformations, enabling us to reduce terms of order up to 2m + 1 on 

the right of Eqs (3.3) to an autonomous form, these equations become 

dw~ l d t= ~ C (k) 2k , i r wj + Oy (u, w', t) (3.6) 
k=l 

w'=col(w'n_l ,W'n)  , CJt)=const, r 2 =  " , Wn-lW n 

where w' is a new critical variable, 0/(u, w', t) is an integral operator such that the expansion in 
powers of e for 0j(eu, ew', t) begins with terms of the second order in e and all terms of order up to 
and including 2m + 1 vanish when u = 0. Note that Eqs (3.6) wi th j  = n - 1 a n d j  = n are complex 
conjugates. 

On the basis of (3.6), we set up the real equation 

dr 
r m = ~ g2k+l r2k+2 + R(3)(v ,U ",t) + R(2m+3)(u ,v ', t), g2k+l = const  

dt k=l 
(3.7) 

where ~ = col(x) 1 . . . . .  1)n_2) and ~' = col(~n<, ~n) are vectors of real variables corresponding to u and 
w', and R (2m+3) are real integral operators such that R (3) (ex), ex)', t) is a polynomial in e of degree 2m 

(3) , (z~+3) + 2 that begins with third-order terms, such that R (0, x), t) -- 0, and the expansion of R (e~, 
eu', t) in powers of e begins with terms of order 2m + 3. 
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Suppose that g3 = . . .  = g2m-1 = 0 and g2m+l > 0 in Eq. (3.7). 
As in [2, 3], one can now use Chetayev's instability theorem [7, 8], which is true for integrodifferential 

equations of the type considered, to prove that the unperturbed motion is unstable. 

Theorem. Suppose that the characteristic equation (1.5) for Eq. (1.1)-(1.4) has a finite number of 
roots in the half-plane Re ~, > -[3, say L~ 0" = 1 . . . . .  N), where Re L< < 0 (j = 1 . . . . .  N - 2) and 
k'N-1 = ion, ~,% = -/co; suppose moreover that all the roots ~,~ (s = 1 , . . . ,  n) corresponding to charactenstac 
exponents ~,~ (1.6) are simple and Re ~,~ < ~,i (l = 1 . . . . .  N - n). Let  conditions (1.8), (2.3), (2.6) and 
(3.1) hold. 

Then, if the first nonL-zero constant in Eq. (3.7) is g2m+l > 0, the trivial solution of Eq. (1.1)-(1.4) is 
unstable. 

4. We will now investigate the stability of the equilibrium position in an example analogous to that considered 
in [9]. The rigid body in this example is a shaftAB whose mass distribution is the same in each cross-section. Rigidly 
fastened to the ends of the shaft are two viscoelastic bodies OA and B01 (each is a shaft of unit length and negligibly 
small mass), whose ends are fixed. The entire system can rotate about the axis OO1, which is assumed to be 
undeformable. Let O be the angle of rotation of the shaft, r the distance of the centre of mass of the shaft from 
the ards 001, mg its mass and J its moment of inertia about the axis OOi. This rigid body is moving in a uniform 
gravitational field under lthe action of the viscoelastic forces exerted on it at its ends A and B by the bodies OA 
and B01. The torque M of these forces is assumed to have the same form as in [10, 11], on the assumption that 
the stress-strain relationship is given by a Volterra-Fr6chet series of which only the first terms affecting the conditions 
derived below are retained, that is 

t i l l  

M=-kO + S K' ( t -  s)O(s)ds + f S I K ( t -u , t -v , t -w)O(u)O(v )O(w)dudv dw (4.1) 
0 0 0 0  

(k is the modulus of elasticity for twisting and K'(t) and/((h,  t2, t3) a re  relaxation kernels). Let us assume 
[11, p. 606] that 

[((t- u,t -v  , t -  w) = K " ( t - u ) K " ( t - v  )K"( t -  w) 

We will investigate the stability in rotational motion of the equilibrium position of the rigid body when its centre 
of mass is in its upper position, 0 = 0. The equations of perturbed motion may be written as 

dO dO I t - - = 0 1  , =-KO+J Kl(t-s)O(s)ds-mlt~3 +~3 +o(t~ 5) (4.2) 
dt dt o 

K = k -  mgr K I (t)= K'(t) K"(t) mgr t 
- - - 7 - - '  - - 7 - '  g2=-Yg- - '  m'=3.-~-' ~=fK2(t-s)O(s)ds  

0 

Suppose that the kernel K"(t) satisfies an estimate of the form (1.4). Assume that the characteristic equation 
for (4.2) has two pure imaginary roots __.ion, the remaining roots having negative real parts and satisfying the condi- 
tions of the theorem. 

After suitable calculations, we see that the sign of the constant g3 is determined by that of the quantity 

g'~ =R°{[ -ml + ( i  K2('t)e/t°tattl2i K2('Qe-i°rtdz][ (al - ib l ) i  ~2(s)ds+ 2t'~]} (4.3) 

where al and bl are the components of the vectors a and b defined in (2.1), and ~2(s) = ~0)(s) + i~(2)(s) is the 
function occurring in representation (3.5). 

Ifg~ > 0, our theorem implies that the equilibrium is unstable. 
If the kernel K(t) has an exponential-polynomial structure, the function ~2(t) can be evaluated explicitly, using 

the well-known general solution of the linearized equation. Thus suppose that Kl(t) has the form 

K I (t) = Ql exP(-~/It) + Q2 exP(-T2t) 

where the constants Qi and ~ (i = 1, 2) satisfy the inequalities 

Ql>0, Q2<0, QI;~IQ21, y l>Y2>0 (4.4) 

Under these conditions, the characteristic equation 
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~ ( ~ . ) ~ 2 + K  - QI _ Q2 
~'+YI X+Y2 

=0 

has a pair of  pure imaginary roots _+io3, where 

0)2 = K - ~ 0 ,  X0 = QI +Q2 
¥1 +72 

and two xoots K'I and Z~ with negative real parts 

~.~,2 =-~(71 +Y2) +- (Yl +72) 2 "YIY2 -Xo 

provided that the following relation exists between the parameters of the system 

f ='~1'~2 + ~ 1  ( ~  -Q|~2 - Q2'~i ) 

Suppose, for simplicity, that ~,'1 and ~.'2 are real numbers. Then the solution of the linearized equation of perturbed 
motion may be written in the form 

O(t) = (tXl 2 + a 2 )-l [(¢x! - iOt 2 ) exp(icot)(ioY~(0) + 01 (0)) + 

+(at + ia2 )exp(- i~)(- iO~(0)  + Ot (0))] + Y. exp(~,~t)(~,~O(0) + Ol (0)) / ¢b'(K~) (4.5) 
k=l.2 

where the constants ¢xl and c~z are determined by the following relation (the prime indicates a derivative of <b) 

O'(i(o) = (x I + i~ 2 

Using (4.5), we can calculate the functions ¢(k)(t) (k = 1, 2), which can be shown to satisfy the identity 

,,l~,~t)+ b~,(2 2)<t)- 0 

Then the sign ofg'3 (4.3) will be the same as that of the quantity g~ defined by 

S~ "= -~07 K2 (s)sin(t°s)ds 
o 

o 

To compute the constant ~0, we have the following formula 

(4.6) 

Suppose, for example, in accordance with (4.4), that Y1 = 3"/0, Y2 = Y0, Q1 = 2~o, Q2 = - 4 ,  where 70 > O. In 
that case, ~ = 12yo/(13#7) > O, and the instability condition implies that the integral in the formula (4.6) f o r ~  
is negative. 
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